SAGA-PBSPro Adaptor

System Specification

High Energy Accelerator Research Organization (KEK)
Computing Research Center

January 8, 2010

Index

1 INEIOAUCEION e ieiiiieiiieee ettt e ettt e e st e e s et e e e s eabaeeeeeaeaes 4
2 OVErVIEW OF SPA ...ttt et e e e 4
2.1 SPA OPETALIONS ...coevvviiiieeeeeeeeeeetieee e e e e e e e reeeeeeeeeee e aeeeeeeeeeeartaeeeeaaees 4
2.2 Scheme Definition to load SPA........ccoiiiiiiii e 4
2.3 JODID FOrmat ..cccoiiiiiiiiiiiii ittt 5
2.4 Status NOtIICAtION ..eeiiiiiiiiiiiiiiei et 5

3 How SPA works with PBSPro commandsccoociiiiniiiiiiiniiiiiiiieeeeeeceeieeeee 7
3.1 PBSPro commands used in SPA ...t 7
3.1.1 PBS SCIIP . ettt e e e eaaaaa 7

3.2 How to use PBSPro commands by SAGAAPTvvvmiiiiiiiiiieiveiviaaens 7
3.2.1 SAZAIJODIISEIVICE CLASS .uuuuiiiiiiiieeceeeeee s nannnnnen 7
3.2.2 Y P 0y To] o1 o) o I o] F= =T TSR 9

4 PBS SCIIPE CrEAtION . .coiiivviiiiieeeeeeeeeeieee et e e e e e e e e e eeeeeeeeerr e eeens 12
4.1 PBS SCIIPE SEIUCTUTLE ..vvveneiiiiieiiiiiieee et e et e e e e e e e e 12
4.2 Attributes of the saga::job::description vs PBS directivescccccccerevvrneunnnnenn. 13
4.2.1 Executable and Argumentscccooeeeeiieeiieeiieeiieeiceeeceeeeeeeeeeee e 14
4.2.2 Environment Variables. ..o 14
7597/ B (01 e B Y=gl D1 Yo 7o) o A 15
4.2.4 Interactive MOccooiiiiiiiiiiiiieeiiee et 17
4.2.5 Standard output and @ITOTo.oivvviiieeeeiiiiiieeeeeeeeeeeeeeeee e 17
4.2.6 File SEagINg..cccceeeeieeeeeeeeeee e 17
4.2. 7 Max Wall tIme .oooueeieiiiiiiieeiiee ettt 20
4.2.8 JODCONEACE ..evveiieiiiiiieiiiiee et s e e 20

4.3 Options saga:job::description does Not SUPPOLtevvvvvvrvviriirivriiieririrreerearanann. 21

B JOD SEALUS cuetteee ittt ettt et e ettt e e e ebbaeeeeas 22
6 Adaptor Configuration File.......cccccooviiiiiiiiiiiiiiiiiiiiiee e 24
6.1 File name and location of Adaptor configuration filecccccvvvvviviiriireninnnnn. 24
(ST 000 Vi T4 Uiz Ko (o) s NEUURUU RPN 24
6.2.1 [saga.adaptors.pbspro_job] SECtION........c.cccievuieieeeicieeeeee e 24
6.2.2 [saga.adaptors.pbspro_job.cli]l SECtiON.........cccecvvevviiveieieiicieeeeieee e 24
6.2.3 [saga.adaptors.pbspro_job.cli.description] SeCtioncccccceevvvvvrivevurennns 24

7 SAGA API specification by SPAcooiiiiiiiiiee e 25
7.1 SAZAIJODIISEIVICE ClASS....iiiiiiiiiiiiieiiieeieessesrseressaaeees 25
T SErVICE(IM) ..ot 25
7.1.2 create_jobGOD_dESC) ...c.ooueiiiiieieeieeieeieeeeeete et 25

9

7.1.3 run_job(commandline, hostname, stdin_stream, stdout_stream,

SEARTT_SEI@AIMN)vviviiceietitceete ettt ettt ettt et s et seete b te b e s seesesseseesens 26
7.1.4 run_job(commandline, hoStname)............cccocuvevevureieeeieeeieieeeee e 26
T15 TSEO oottt ettt 26
7.1.6 2et_JODGOD_IA) .ooeiiiiieeeiiceeceeeeeee et 27
7.1.7 L= 1 {0 TR 27
7.2 88 JODIJOD ClASS ciiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 28
7.2.1 @et_JOD_Ad0) vt 28
7.2.2 PUDNQ 1ottt ettt ettt ettt ettt et e eteereere e eneeneas 28
7.2.3 WaIt(EIMEOUL) ...eoveieiieiicicetecee ettt et 28
7.2.4 canCel(tiMEOUL)cvevieuiiieieeiiieieee ettt ettt 29
7.2.5 @et_SEAtE0) ..oiiiiiiieeeeeeee et 29
7.2.6 get_descriptionO......c.ccoiviiiiiiieiieieeeee e 29
7.2.7 @et_SEANO .cuiiiiiieiieeeeeceeeee ettt 30
7.2.8 @et_SEAOULD .oveovieieiieieeeeeeee ettt 30
7.2.9 @et_SEATTO) ...ooiieieeeieecceeeeeeee et 31
O S Y o Y=3 Ve [ISR 31
7211 T@SUME0 ..viiviieiieiieieeeeteeteeee ettt ettt ettt ettt et et eete ettt ettt e eaeereeneas 31
7.2.12 cheCKPOINETO) c.oouviieiieiceieceeceee ettt 32
7.2.13 MiIGrateGOoD_deSC)cooiiviieieeiieieeeeeeeeeeeeee et 32
7.2.14 SigNal(SIGNAL)ioviiviciieeieeeceeeee ettt ettt 32
SOULCE FILES .ttt s st e e st e e e 34
8.1 Source files related to Adaptor implementation........ccceceeeiieevriiiieeeeeeeieerrinennn.. 34
8.2 Source files related to PBSPro commands.......ccccocueeiiiiiiiiiiniieiiiiiiieeeiieeeas 34
Class REfErenCeuiiiiiiiiiiii e e e 35
9.1 INAINESPACE cevvueeeeeeiieeieieee e eeeeree e e e et reeeeeeeeeee s reeeeeeseeerrtaaeeeeeseerrranaeeeens 35
9.2 a8 tiiieiiiiiiiieet e ettt e e e e e e te e e e e s e e e abrbaeeeeeeeeannttbraaaeeeeeeannnes 35
9.2.1 NAMESPACE POSPIO_JOD coeiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeee e e e e e e e e e e e eee e 35
9.2.2 namespace pbspro_jobiicllccccciiiiiiiiiiiiii, 35
9.2.3 namespace pbspro_jobihelper.......ccccccvvviiiiiiiiiiiiiiiiiiie 36
9.3 FUNCEIONS ..ttt ettt e ettt e st e e e 36
9.3.1 namespace pbspro_jobhelper.......ccccccvvviiiiiiiiiiiiiiiiii 36

1 Introduction

This document is the system specification of the SPA (SAGA-PBSPro Adaptor for Job

Management).

2 Overview of SPA

SPA is the SAGA adaptor that is required to use a cluster system by PBSPro (Portable
Batch System Professional Edition). SPA enables SAGA applications to submit jobs to
PBS and to monitor the job statuses via SAGA API.

This chapter describes the SPA operations and how to use SPA.

2.1 SPA operations

PBSPro commands should be installed in the environment to use SPA for the reason
that SPA required PBSPro commands to access PBS. The following is the procedure
that a SAGA application issues a PBSPro command via SAGA API.

1) Create an instance of saga:job::service class. The argument of the constructor
has the SAGA URL including PBSPro scheme and the job submit host.

2) SAGA engine starts the initialization of SPA. SPA is initialized based on the
adaptor configuration file.

3) SAGA application executes SAGA API.

4) SAGA engine calls suitable a SPA function by the invoked SAGA API.

5) The SPA function calls a suitable PBSPro command which accesses to PBS.

2.2 Scheme Definition to load SPA

The argument of the saga::job::service class constructor should have the following
SAGA URL, in order to load SPA by SAGA application.

pbspro://localhost!

pbspro Scheme name to load SPA

localhost FQDN of the host executing SAGA application

This URL means that the SAGA application access PBS by using PBSPro commands
of the host, localhost , as backend commands. SPA can accept the scheme “any” because
SAGA specification defines that SAGA application can select any adaptor by using “any”
scheme. It is possible that SPA is not loaded if using “any” scheme when several
adaptors are installed. The localhost is used as the hostname of the local file location to
stage files, therefore, the FQDN of the host must be used instead of string “localhost”.

2.3 JobID Format
SAGA defines JobID should be specified as the following.
‘Ibackend url] — [native id]’

Then, the SAGA JobID for PBSPro becomes like the following.

[pbspro://localhostl] — [PBS JOB_ID)

pbspro Specify “pbspro” to use PBSPro commands to access PBS jobs.
Not specify “any” here.

localhost FQDN of the host executing SAGA application

PBS JOB ID PBS JobID. This JobID should be specified as below.

> sequence number
> sequence number.server name
There are other formats of PBS JobID but the current SPA uses

only above two types of formats.

2.4 Status Notification

SPA uses PBSPro commands to acquire the job status but that requires some

limitations.

One of the limitations is that “gstat” command cannot acquire the job status. PBSPro
ver.9.xx does not hold the information of completed jobs in the execution queue. To
solve that, SPA uses “tracejob” & “grep” command to parse the log data to get only

“exit_state” value, instead of using “qstat”.

The other limitation is that “gstat” command cannot acquire the error information if
the job fails on the PBS server. In such a situation, the job becomes listed on the

execution queue as “Wait” status.

The above limitations might cause problems to monitor job statuses correctly.
Therefore, to avoid the situation that SPA cannot get job statuses by the limitations,
SPA has the email notification function that the job statuses are informed to the use
submitting the job. In the default configuration, SPA always sends email whenever the
job is aborted. The destination of the email is the user who executes the commands to

submit a job.

The destination of the email can be specified as dJobContact in the adaptor

configuration file.

3 How SPA works with PBSPro commands

This chapter describes how SPA works with PBSPro commands.

3.1 PBSPro commands used in SPA

SPA uses the following PBSPro commands.

gsub To submit jobs.

Used in saga:job::service::run_job() and saga::job::job::run()

gstat To get job statuses and job lists.
Used in saga::job:;job::get_state() and saga::job::service::list()

tracejob To get completed job statuses.

Used in saga::job::job::get_state()

PBSPro has other commands to control jobs but the current SPA supports the above

commands only.

3.1.1PBS script
SPA creates PBS script and outputs the script to the standard input of the ‘gsub’
command without creating a file of the script. PBS script can include not only job
execution command but also PBS directives as the options of gsub command. Further

information of PBS directives in the PBS script by SPA is described in the chapter 4.

3.2 How to use PBSPro commands by SAGA API
This chapter describes each SAGA API methods to use PBSPro commands. The SAGA
API implementation for SPA is described in the chapter 7.

3.2.1saga::job::service class

run_job(commandline, hostname)

This API executes the command specified by commandline as a job submission by using

‘gsub’ command. The following is the explanation about the arguments of this API.

commandline This string will be output to PBS script directly.

hostname This argument is not supported in the current SPA.

SPA converts the PBS JobID of the gqsub standard output to SAGA JobID. Then, SPA
stores the SAGA JobID in the saga::job::attributes::jobid in saga:;job::job object.

Example:
The following example shows the case that PBS JobID is 179.kek-snal31.soum.co.jp.

179.kek-snal31l.soum.co.jp

list(

This API gets a list of PBS JobID by using ‘gstat’ command. The argument is not
specified. SPA takes information of PBS JobID in the job list of the output by the gstat
standard output. SPA converts all of the PBS JobID information to SAGA JobID and

returns them in form of std::vector.

Example:

For example, if gstat returns like the flowing output,

Job id Name User Time Use S Queue
66 . kek-snal3l kkk takando 00:00:00 C workq
67 .kek-snal3l kkk takando 00:00:00 C workq

SPA returns the following SAGA JoblID.

[pbspro://kek-sna.soum.co.jp/] — [66.kek-snal31l]

[pbspro://kek-sna.soum.co.jp/] — [67.kek-snal31l]

get_job(jobid)
This API executes ‘gqstat PBS JobID by using the PBS JobID converted by the SAGA
JobID specified in the argument jobid. This API uses the ‘gstat’ command in order to

check the availability of job information but not to check job statues.

3.2.2saga::job::job class

run()

This API creates a PBS script based on saga::job::description that is specified by the
arguments of saga:jobi:service:create_job(), and then submits a job with the PBS
script by using ‘gsub’ command. SPA executes the ‘gsub’ command without arguments.
Instead, SPI inputs the created PBS script to the standard input of the gqsub process.
Also this API gets the PBS JobID from the gsub standard output, converts PBS JobID
to SAGA JobID, and then stores the PBS JobID to saga::job::attoributes::;jobid of the
saga:job::job object.

get_state()

This API executes ‘gstat —f” in order to get a job status. PBS JobID will be specified in
the argument of ‘qstat —f’. The PBS JobID will be created based on the
saga:job::attributes:;jobid of the saga::job::job object. The command ‘gstat —f” outputs
the job information like the following. SPA checks the information of job_state and
exit_status in the job information. Further information how to check their values is

described in the chapter 5.

Job Id: 80.kek-snal3l.soum.co.jp

Job_Name = cmdl.txt

Job_Owner = takando@kek-sna.soum.co.jp

resources_used.cput = 00:00:00

resources_used.mem = Okb

resources_used.vmem = 0Okb

resources_used.walltime = 00:00:00

job_state = C

queue = workq

server = kek-snal3l.soum.co.jp

Checkpoint = u

ctime = Thu Mar 12 13:32:45 2009

Error_Path = kek-sna.soum.co.jp:/home/takando/SB/spa-trunk/test/saga/cmdl.
txt.e80

exec_host = kek-snal32.soum.co.jp/0

Hold_Types = n

Join_Path = n

Keep_Files = n

Mail_Points = a

Mail_Users = takando@soum.co.jp

mtime = Thu Mar 12 13:32:45 2009

Output_Path = kek-sna.soum.co.jp:/home/takando/SB/spa-trunk/test/saga/cmdl
.txt.o80

Priority = 0

qtime = Thu Mar 12 13:32:45 2009

Rerunable = True

Resource_List_host = kek-snal3l.soum.co.jp

Resource_List.nodect = 1

Resource_List.nodes = 1

session_id = 11410

substate = 59

Variable_List = PBS_O_HOME=/home/takando,PBS_0O_LANG=en_US.UTF-8,
PBS_O_LOGNAME=takando,
PBS_0O_PATH=/usr/local/torque/bin:/usr/local/torque/sbin:/usr/pbspro/b
in:/usr/kerberos/bin:/usr/java/default/bin:/usr/local/globus-4.0.8/bin
:/usr/local/globus-4.0.8/sbin:/opt/condor-7.0.4/bin:/opt/condor-7.0.4/
sbin:/usr/local/apache-ant-1.7.1/bin:/usr/local/bin:/bin:/usr/bin:/hom
e/takando/bin:/home/takando/local/bin,

PBS_O_MAIL=/var/spool/mail/takando,PBS_O_SHELL=/bin/bash,

10

PBS_SERVER=kek-sna.soum.co.jp,PBS_0O_ HOST=kek-sna.soum.co.jp,
PBS_O_WORKDIR=/home/takando/SB/spa-trunk/test/saga,PBS_0O_QUEUE=workq
comment = Job started on Thu Mar 12 at 13:32
etime = Thu Mar 12 13:32:45 2009

0

exit_status
submit_args = ./cmdl.txt
start_time = Thu Mar 12 13:32:45 2009

start_count = 1

11

4 PBS script creation

There are two ways to submit a job by SAGA applications;
> Create saga‘:job:;job object by saga:job::service::create_job() and then execute run()

> Execute saga:job::service::run_job()

In the former way, SAGA application should configure the job information in the
saga‘job::description object. SPA creates a PBS script based on the
saga::job::description object.

In the latter way, SAGA application needs to specify the job infromation in the
argument of the saga:job::service::run_job(). SPA creates a saga::job::description object

based on the API arguments, and then creates a PBS script by the object.

This chapter describes how to create a PBS script by SPA.

4.1 PBS script structure

PBS script is a shell script to input for the ‘gsub’ command. The following is an

example.

#1 /bin/sh
#PBS option

#PBS option

executable argument ...
executable argument ...

executable argument ...

In that example, the portion ‘executable argument ...” means the executable command
and its arguments on the job execution host. The portion #PBS ...’ means PBS

directives. The PBS directives are used as the arguments of the ‘qsub’ command.

12

4.2 Attributes of the saga::job::description vs PBS directives
The following table shows the corresponding table the saga::job::description attributes
and PBS directives. SPA does not care about the attribute that is “Ignore” in the
requirement column in the table. The “Not implemented” attributes are planned to be
supported in the future version. The attribute names beginning with “description_ ...”
They should be

“saga:ijob:iattributes::description_ ...” to be exact but the tables uses only “description_

are defined in the namespace saga:ijob:attributes.

...” here to avoid redundancies.

saga‘:job::attributes PBS directives Requirement
description_executable (executable) Required
description_arguments (argument) Option
description_environment -v variable listl,...] Option
description_working_directory -d path Option

description_interactive

-I or -W interactive=true

Not Implemented

description_input

Not Implemented

description_output -0 path Option
description_error -e path Option
description_file_transfer -W stagein=file_list and -W stageout=file_list Option

description_cleanup

Not Implemented

description_job_start_time

-a date time

Not Implemented

Description_totall_cpu_time

-1 cput=seconds

Not Implemented

description_wall_time_limit

-1 walltime=seconds

Option

description_total_physical_memory

-1 pmem=size

Not Implemented

description_cpu_architecture

-1 arch=string

Not Implemented

description_operating_system_type

-1 opsys=string

Not Implemented

description_candidate_hosts

-1 host=string

Not Implemented

description_queue

-q destination

Not Implemented

description_job_contact -M user list Option
description_job_project Ignore
description_spmd_variation - Ignore
description_total_cpu_count -1 nodes Not Implemented
description_number_of_proceses -1 nodes Not Implemented
description_processes_per_host -1 nodes Not Implemented

description_threads_per_process

Ignore

13

4.2.1 Executable and Arguments

The values of description_executable and description_arguments are written in the
end of the created PBS script. The description_executable must be specified. If the
description_executable is not specified, the exceptions are happen in the
saga‘job:service::create_job(). According to SAGA specification, two or more
description_executable values cannot be specified in one saga::job::description even if a
PBS script itself can accept several command lines. Therefore, the PBS script that is

created by SPA can have only one executable command.

Example: SAGA application example

namespace sja = saga::job::attributes;

saga::job::description jd;

jd._set_attribute(sja::description_executable, "/usr/bin/ci');

std: :vector<std::string> args;

args.push_back(*'-m¥"add include¥'");

args.push_back("'sample.c');

jd._set_vector_attribute(sja: :description_arguments, args);

Example: PBS script sample

#1 /bin/sh

/usr/bin/ci -m"add include" sample.c

4.2.2 Environment Variables

The environment variables should be specified in description_environment by

14

std::vector object. Each entry is a string in the form of “name=value’. SPA combines

their entries by commas and puts the combined string as the —v option value.

Example: SAGA application example

namespace sja = saga::job::attributes;

saga::job::description jd;

std: :vector<std::string> env;

env.push_back(*'FOO=HOGE") ;

env.push_back(*'BAR=FUGA™) ;

jd._set_vector_attribute(sja: :description_environment, env);

Example: PBS script sample

#1 /bin/sh

#PBS -v FOO=HOGE,BAR=FUGA

4.2.3Working Directory
The working directory defined in description_working_directory is specified by the “-d’
option of the ‘gsub’ command. If the description_working_directory is not specified, SPA

will not create PBS directives.

Note:

In the case that SAGA application specifies the working directory, specifying absolute
directory paths of local host and remote host are recommended. The directory specified
in description_working_direcoty is used not only as a job working directory on the
remote host but also as a working directory on the local host. Therefore, the working

directories on the local host and remote host are influenced by existence or

15

nonexistence of the -d’ option and absolute or relative path of the specified path.

» Working directory on Local host
¢ The working directory becomes the current directory if
description_working_directory is not specified.
¢ The working directory becomes the relative directory to the current directory if
description_working_directory is specified as a relative directory.
¢ The ‘qsub’ command returns errors and the job is not created if the directory
specified in description_working_directory does not exist on the local host.
» Working directory on Remote host
¢ The working directory becomes the home directory if
description_working_directory is not specified.
¢+ The working directory becomes the same path as the working directory on the
local host if description_working_directory is specified.
¢+ The ‘exit_status’ value of the job becomes “-2” and sends a email with the abort
notification to the user, if the directory specified in

description_working_directory does not exist on the remote host.

Then, SPA handles the specified path as below.

» The working directory is specified as Relative path
¢+ SPA converts the relative path to a absolute path. In this case, the path of both
home directories on the local and remote hosts should be same.
» The working directory is specified as Absolute path
¢ The specified path is used as the working directory directly.

SPA does not check whether the working directory does exist or not. The users should

create working directories before to submit a job.

Example: SAGA application example

namespace sja = saga::job::attributes;
saga::job::description jd;

jd._set_vector_attribute(sja: :description_working_directory, "/tmp");

16

Example: PBS script sample

#1 /bin/sh

#PBS —d /tmp

4.2 4Interactive mode
The current SPA does not support the interactive mode. SPA can accept the only “false”
value of the description_interactive. If the specified value is “true”, SPA returns the

exception, “Not Implemented”.

4.2.5Standard output and error
SPA supports the standard output/error. TBD.

4.2.6File staging

SPA converts the value of the file transfer directive specified in the

description_file_transfer to the argument of the ‘gsub’ command as the “W’ option.

Format and Limitation of File transfer directive

The following is the format to specify the file transfer directive but there are some

limitations.

local_file operator remote_file

local_file Only absolute or relative path can be specified. URL can NOT be
specified.
operator Only > or ‘< can be specified. Existing files will be overwritten

according to PBSPro specification. If other characters are specified

here, SPA returns exceptions.

17

remote_file Only absolute or relative path can be specified. URL can NOT be

specified.

Format of the ‘W’ option
» Stage in option to transfer files to Remote host before job execution

-W stagein=Ffile_list

» Stage out option to transfer files to Local host after job execution

-W stageout=File_list

The file_list format is the following.

Local_file@hostname:remote_file[,...]

Conversion to “W’ option

Transfer files to a job execution host
The operator >’ of the file transfer directive converts to “W statein=..." option to
transfer files to a job execution host.

Source file In use of SPA, the only files on SAGA application execution host can
be specified as the source files (left hand side of operator). The relative path is
assumed as a relative path to the current directory if the source file is specified
with a relative path, and then the relative path is converted to the absolute path.
The hostname uses the host name of the URL specified in the arguments of the
sagaiijob:iservice constructor.
Target file The target is the job execution host. The relative path is assumed as a
relative path to the working directory if the target file (right hand side of operator)
is specified with a relative path, and then, the relative path is converted to the

absolute path.

Transfer files from the job execution host
The operator ‘<’ of the file transfer directive converts to “W stateout=...” option to
transfer files from the job execution host.
Source file The source is the job execution host. The relative path is assumed as a
relative path to the working directory if the target file (right hand side of operator)

is specified with a relative path, and then, the relative path is converted to the

18

absolute path.

Target file In use of SPA, the only files on SAGA application execution host can be
specified as the target files (left hand side of operator). The relative path is
assumed as a relative path to the current directory if the target file is specified
with a relative path, and then the relative path is converted to the absolute path.
The hostname uses the host name of the URL specified in the arguments of the

sagaiijob:iservice constructor.
Files after Job execution
The files that are staged in before the job execution will be removed from the job

execution host after the job execution.

Example: SAGA application example

namespace sja = saga::job::attributes;

saga::job::service js(“'pbspro://example.com/™);

saga::job::description jd;

std: :vector<std::string> ft;

ft._push_back(''/home/user/tiger.eps > /tmp/tiger.eps');

ft_push_back(''/home/user/tiger.pdf < /tmp/tiger._pdf'");

jd._set_vector_attribute(sja::description_file_transfer, ft);

Example: PBS script sample

#1 /bin/sh

#PBS -W stagein=/tmp/tiger._eps@example.com:/home/user/tiger.eps

#PBS -W stageout=/tmp/tiger.pdf@example.com:/home/user/tiger.pdf

19

4.2.7Max Wall time

SPA uses the value of the description_wall_time_limit as the walltime.

Example: SAGA application example

namespace sja = saga::job::attributes;

saga::job::description jd;

jd._set_attribute(sja::description_wall_time_limit, "300");

Example: PBS script sample

#1 /bin/sh

#PBS -1 walltime=300

4.2.8JobContact
SPA uses the email address specified in the description_job_contact as the “M’ option
of the ‘gqsub’ command. That enables that users can receive the status notification
emails from PBS server when the job 1is aborted. The format of the
description_job_contact value is URI as the following. The current SAGA C++ API ver.
1.1.1 supports to specify only one address as JobContact even if the SAGA specification

defines the JobContact as vector string.

mailto:<mail address>

The saga:jobidescription will not be referred when the job is executed by the

20

saga‘job:server:run_job(). In this case, PBS server tries to send an abort notification

to the default address that is the user executing the ‘gsub’ command.

In the case of submitting a job by using the saga‘job:iserver:run_job(), PBS server
tries to send an abort notification to the user address that executes the “gqsub”
command on the job execution host as the default JobContact. However, it is possible
that the host executing the SAGA application cannot receive emails. To avoid such a
situation, the default JobContact address can be specified in the adaptor ini file. Also in
the case of submitting a job by using the saga:job:server:create_job() and the
description_job_contact is not specified, the JobContact address specified in the

adaptor ini file is used.

Example: SAGA application example

namespace sja = saga::job::attributes;

saga::job::description jd;

jd._set_attribute(sja::description_job_contact, "mailto:kek-sna@soum.co.jp'™);

Example: PBS script sample

#1 /bin/sh

#PBS -M kek-sna@soum.co.jp

4.3 Options saga::job::description does not support
The saga::job::description does not support the following options. SPA uses fixed

values because SAGA applications cannot specify the values.

-N name name is shown in the Name column of the ‘gstat’ command output. The

fixed value is “saga-app” in SPA.

21

5 Job Status

The following table shows the comparison between PBS job state and the

saga:job::state.

PBS job_state saga‘:job::state
- (Right after a job object is created) saga:job::New
- Job is completed after having run. saga::job::Done, saga::job::Failed
E Job is exiting after having run. saga:job::Running
H Job is held.
Q Job is queued, eligible to run or routed.
R Job 1s running.
S (Unicos only) Job is suspended. saga:job::Suspend
T Job 1s being moved to new location. saga‘job::Running
AW Job is waiting for its execution time (-a

option) to be reached.
- (Cancel after the job execution) saga‘job::Canceled

saga::job::New
This state, New, is set in the saga:job:job object created by the
saga'job:iservice:icreate_job() before submitting the job. PBS does not have this job

state because this state is the state before submitting the job.

saga:job::Running
This state, Running, is set the saga:job:;job object when submitting the job by the
saga‘job:jobirun() or the saga:jobiservice:run_job(). This state does not change
unless the saga‘:job:job:get_state() detects that the job is completed or fails. The job in
the ‘W’ PBS job state is also this Running state. That is because the ‘W’ state means
“submitted job” that is no different from the ‘R’ state from a viewpoint of the SAGA.

saga::job::Suspended
The current SPA does not support the Suspended state.

saga:job::Done
This state, Done, is set the saga‘job::job object when the saga::job:job::get_state()

returns the following results. The get_state() uses the ‘gstat’ command to get a queue

22

list and the ‘tracejob’ command to get the “exit_status”.
» The job does not exist in the list that ‘qstat’ returns.
» The “exit_status” is 0.

saga:job::Failed
This state, Failed, is set the saga‘job:;job object when the saga::job:job:get_state(
returns the following results. The get_state() uses the ‘gstat’ command to get a queue
list and the ‘tracejob’ command to get the “exit_status”.
» The job does not exist in the list that ‘qstat’ returns.
» The “exit_status” 1s NOT 0.

saga::job::Canceled

The current SPA does not support the Canceled state.

23

6 Adaptor Configuration File

The adaptor configuration file is used to specify SPA configuration. Users can modify

SPA default configuration as they need.

6.1 File name and location of Adaptor configuration file
The file name of the SPA adaptor configuration file is “saga_adaptor_pbspro_job.ini”.
The ini file is typically installed in the directory, $SAGA_LOCATION/share/saga.

6.2 Configuration

6.2.1[saga.adaptors.pbspro_job] section

name Specified as “pbspro_job”. No change in typical use.
path Specified as “$[saga.location]/lib”. No change in typical use.
enabled Specified as “false” when SPA is disabled. No change in typical use

6.2.2[saga.adaptors.pbspro_job.cli] section

Reserved.

6.2.3[saga.adaptors.pbspro_job.cli.description] section

JobContact

Specifies the email address to receive from PBS server. The format
is mailto'user@host. This JobContact is used as the default value
when the description_job_contact is not specified. Also, this
JobContact is always used in the case of jobs submitted by using
saga‘jobiiservice: run_job().

Specifying this JobContact is mandatory to load SPA. If JobContact

is not specified, SPA returns errors in being loaded.

24

7 SAGA API specification by SPA

This chapter describes the specification of the saga::job::service and saga::job::job in

the case of using SPA.
7.1 saga::job::service class

7.1.1service(rm)

Purpose

Constructor of the saga::job::service class.

Inputs

rm Specify the SAGA URL. (Refer to 2.2)

Outputs

n/a

Exceptions

BadParameter Occurs if the URL is not correct.

7.1.2create_job(job_desc)

Purpose

Creates a sagaijob:job object. This API checks following attributes of the
saga::job::description.
» description_executable

» description_interactive

Inputs

job_desc Specify the saga::job::description to be submitted.

Outputs

Returns a saga::job::job. The job status becomes saga::job::New.

Exceptions

BadParameter Occurs if the mandatory attribute, descriptin_executable, is not
specified or null.

Not Implemented Occurs if the description_interactive is “True’.

25

7.1.3run_job(commandline, hostname, stdin_stream, stdout_stream,
stderr_stream)

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

7.1.4run_job(commandline, hostname)

Purpose

Submits a job without a saga::job::description

Inputs

commandline Specifies a command to be executed.
hostname The current SPA does not support
Outputs

Returns the sagaijob:job of the submitted job. The job status becomes

saga:job::Running, saga:job::Done, or saga::job::Failed.

Exceptions

NoSuccess Occurs when executing the ‘gsub’ command has problems.

7.1.5list()

Purpose

Gets the job list that PBS server controls.

Inputs

n/a

Outputs

Returns SAGA JobID in the std::vector<std::string> type

26

Exceptions

NoSuccess Occurs when executing the ‘gstat’ command has problems.

7.1.6get_job(job_id)

Purpose

Gets a saga::job:;job object by specifying SAGA JoblID.

Inputs

job_id Specify the SAGA JobID

Outputs

Returns the saga:;job::job if the specified job exists.

Exceptions

BadPrameter Occurs when the SAGA JoblID is specified in wrong format.
DoesNotExist Occurs when the specified job does not exist.

NoSuccess Occurs when executing the ‘gstat’ command has problems.

7.1.7get_self()

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

27

7.2 saga::job::job class

7.2.1get_job_id()

Purpose

Returns the SAGA JoblID of this object.

Inputs

n/a

Outputs

Returns the SAGA JobID.

Returns empty string if the job status is saga::job::New.

Exceptions

n/a No exception occurs by this API

7.2.2run()

Purpose

Submits the job whose status is saga::job::New

Inputs

n/a

Outputs

n/a

Exceptions

BadPrameter Occurs when the attribute values in the saga:job:idescription
are wrong.

IncorrectState Occurs when the job state is not saga::job::New.

NotImplemented Occurs when the saga::job::description has wrong attributes.

NoSuccess Occurs when executing the ‘qgsub’ command has problems.

7.2.3wait(timeout)

Purpose

The current SPA does not support.

28

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

7.2.4cancel(timeout)

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

7.2.5get_state()

Purpose

Gets the state of this job.

Inputs

n/a

Outputs

Returns the saga::job::state

Exceptions

NoSuccess Occurs when executing the ‘gstat’ command has problems.

7.2.6get_description()

Purpose

29

Returns the saga:ijob::description object of this job if the saga:job:job object
corresponds to either of the following.

> The object is given by saga::job::service::run_job() .

> The object is created by saga::job::service::create_job().

Inputs

n/a

Outputs

Returns a saga:job::description

Exceptions

DoesNotExist Occurs if the saga::job:job object does not correspond to the

above cases.

7.2.7get_stdn()

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

7.2.8get_stdout()

Purpose

Returns standard output strings as job outputs

Inputs

n/a

Outputs

Returns standard output strings as job outputs in the std::string type.

Exceptions

IncorrectState Occurs when the job state is not saga::job::Done.

30

7.2.9get_stderr()

Purpose

Returns standard error strings as job errors

Inputs

n/a

Outputs

Returns standard error strings as job errors in the std::string type.

Exceptions

IncorrectState Occurs when the job state is not saga::job::Done.

7.2.10 suspend()

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

7.2.11 resume()

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

31

7.2.12 checkpoint()

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

7.2.13 migrate(job_desc)

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

Not Implemented Always occurs.

7.2.14 signal(signal)

Purpose

The current SPA does not support.

Inputs

n/a

Outputs

n/a

Exceptions

32

Not Implemented

Always occurs.

33

8 Source Files

8.1 Source files related to Adaptor implementation
The following files are using templates created by adaptors/generator/generator.pl

SAGA provides. The italic files are directly using the templates without modifications.

pbspro_job_adaptor.cpp
pbspro_job_adaptor.hpp
pbspro_job_service.cpp
pbspro_job_service.hpp
pbspro_job.cpp
pbspro_job.hpp
pbspro_job_adaptor.ini
pbspro_job_async.cpp
pbspro_job_service_async.cpp
pbspro_job_istream.hpp
pbspro_job_ostream.hpp

YV V V V V V V V V V V VY

pbspro_job_stream.hpp

8.2 Source files related to PBSPro commands

The following files are newly created to implement SPA.

debug.hpp
directives.hpp
directives_impl.cpp
directives_impl.hpp
script.cpp

script.hpp

staging.hpp
pbspro_cli.cpp
pbspro_cli.hpp
pbspro_cli_staging.cpp
pbspro_cli_staging.hpp
pbspro_helper.cpp

YV V V V V V V V V VYV V V VY

pbspro_helper.hpp

34

9 Class Reference

9.1 Namespace

SPA uses the following namespace.

pbspro_job

Contains whole SPA

pbspro_job:icli

Pro command executions.

pbspro_job::helper

Contains helper functions.

9.2 Class

The section describes main classes in each namespace shown in the section 9.1.

9.2.1namespace pbspro_job

adaptor (struct)

daptor

job_cpi_impl

The SPA implementation for the saga::job::job.

job_srvice_cpi_impl

The SPA implementation for the saga:i:job:iservice

9.2.2namespace pbspro_job::cli

directives The interface that configures the PBS directives.
directives_checker The interface that checks the PBS directives.
directives_builder The interface that builds the PBS directives.
directives_impl The class that configures the PBS directives.
directives_checker_impl | The class that checks the PBS directives.
directives_builder_impl The class that builds the PBS directives.
job_script The PBS script file class.

job_script_builder

The class that builds the PBS script files.

_directives_checker_impl

This class that checks the PBS directives is used by th

e job_script_builder class.

file transfer

The class that defines the file transfer.

file_transfer_parser

The interface that parses the file transfer directives.

35

Contains the classes and functions related to PBS

The adaptor implementation inherited from the sagata

output_parser

The class that parses the PBSPro command outputs.

jobstat

The class that contains the job attributes of the ‘gstat

—f’ command outputs.

jobstat_builder

The class that builds jobstat.

qsub

The ‘gsub’ command class.

gstat

The ‘gstat’ command class.

file_transfer_impl

The class that implements the file_transfer.

file_transfer_parser_impl

The class that implements the file_transfer_parser_impl.

staging path_builder

The class that builds path names for the workflow file
staging.

9.2.3namespace pbspro_job::helper

jobid_converter

The class that converts JobID formats between PBSPr
o JobID and SAGA JobID.

9.3 Functions

This section describes the functions belonging to no class.

9.3.1namespace pbspro_job::helper

convert_saga_job_state(pbspro_statu | The function that converts a PBSPro Job st

s)

ring to a SAGA state string.

create_saga_job_description(jd, cmd, | The function that builds a saga:job::descript

host)

ion for the saga::job::service::run_job().

split_command_line(cmd, executable, | The function that splits command line strin

options)

gs for the saga:job::service:run_job().

36

